Interactions and exchange of CO2 and H2O in coals: an investigation by low-field NMR relaxation
نویسندگان
چکیده
The mechanisms by which CO2 and water interact in coal remain unclear and these are key questions for understanding ECBM processes and defining the long-term behaviour of injected CO2. In our experiments, we injected helium/CO2 to displace water in eight water-saturated samples. We used low-field NMR relaxation to investigate CO2 and water interactions in these coals across a variety of time-scales. The injection of helium did not change the T2 spectra of the coals. In contrast, the T2 spectra peaks of micro-capillary water gradually decreased and those of macro-capillary and bulk water increased with time after the injection of CO2. We assume that the CO2 diffuses through and/or dissolves into the capillary water to access the coal matrix interior, which promotes desorption of water molecules from the surfaces of coal micropores and mesopores. The replaced water mass is mainly related to the Langmuir adsorption volume of CO2 and increases as the CO2 adsorption capacity increases. Other factors, such as mineral composition, temperature and pressure, also influence the effective exchange between water and CO2. Finally, we built a quantified model to evaluate the efficiency of water replacement by CO2 injection with respect to temperature and pressure.
منابع مشابه
C - NMR study of the S = 1 / 2 antiferromagnetically coupled spin chain compound [ PM · Cu ( NO 3 ) 2 · ( H 2 O ) 2 ] n under pressure
We present an investigation of the S = 1/2 antiferromagnetically coupled Heisenberg spin chain [PM·Cu(NO3)2·(H2O)2]n (PM = pyrimidine = C4N2H4) with field-induced gap by means of 13C–NMR experiments. From the measurements of NMR shift and spin-lattice relaxation rate 1/T 1 we extract the magnetic exchange parameter J/kB and the size of the spin gap ∆ as function of pressure. The observed pressu...
متن کاملPetrophysical characterization of coals by low-field nuclear magnetic resonance (NMR)
0016-2361/$ see front matter 2009 Elsevier Ltd. A doi:10.1016/j.fuel.2009.11.005 * Corresponding author. Tel.: +86 10 82320892; fax E-mail address: [email protected] (Y. Yao). Nuclear magnetic resonance (NMR) has been widely used in petrophysical characterization of sandstones and carbonates, but little attention has been paid in the use of this technique to study petrophysical properties of coal...
متن کاملPreparation of Gd2O3 nanoparticles from a new precursor and their catalytic activity for electrochemical reduction of CO2 to CO
The mononuclear Gd(III) complex, [Gd(L)3(H2O)5] (where L is alizarin yellow R (NaC13H8N3O5)), has been prepared in H2O under reflux condition. The Gd(III) complex has been characterized by elemental analysis and spectroscopic methods (UV–Vis and FT–IR). The Gd2O3 nanoparticles were prepared by the calcination of the Gd(III) complex in air at different temperatures up to 600 °C for 2 h. The calc...
متن کاملInvestigation of CO2 and H2O Addition to Natural Gas for Production of Synthesis Gas
General modeling and optimization of syngas production via noncatalytic autothermal partial oxidation of methane are carried out using our developed scientific software which was based on the minimization of total Gibbs energy. In this work, a novel application of the direct search and Newton-Raphson methods was introduced to apply to optimization of a complex chemical reaction. Sensitivity ana...
متن کاملNumerical Investigation of the Non-Uniformity of the Electric Field Distribution by Injection of Net Electron Charge in TE CO2 Laser
In this report, the distribution and deviation of electric field in the active medium of the TE CO2 laser has been investigated due to the injection of net electron charge beam as a plasma generator. Some parameters of system have been considered, such as density and mean-free-path of injected charge beam. The electric potential and electric field distribution have been simulated by solving the...
متن کامل